首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   3篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2014年   12篇
  2013年   5篇
  2012年   5篇
  2011年   6篇
  2010年   2篇
  2009年   4篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1986年   1篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有68条查询结果,搜索用时 31 毫秒
11.
Insect herbivores are considered vulnerable to extinctions of their plant hosts. Previous studies of insect-damaged fossil leaves in the US Western Interior showed major plant and insect herbivore extinction at the Cretaceous–Palaeogene (K–T) boundary. Further, the regional plant–insect system remained depressed or ecologically unbalanced throughout the Palaeocene. Whereas Cretaceous floras had high plant and insect-feeding diversity, all Palaeocene assemblages to date had low richness of plants, insect feeding or both. Here, we use leaf fossils from the middle Palaeocene Menat site, France, which has the oldest well-preserved leaf assemblage from the Palaeocene of Europe, to test the generality of the observed Palaeocene US pattern. Surprisingly, Menat combines high floral diversity with high insect activity, making it the first observation of a ‘healthy’ Palaeocene plant–insect system. Furthermore, rich and abundant leaf mines across plant species indicate well-developed host specialization. The diversity and complexity of plant–insect interactions at Menat suggest that the net effects of the K–T extinction were less at this greater distance from the Chicxulub, Mexico, impact site. Along with the available data from other regions, our results show that the end-Cretaceous event did not cause a uniform, long-lasting depression of global terrestrial ecosystems. Rather, it gave rise to varying regional patterns of ecological collapse and recovery that appear to have been strongly influenced by distance from the Chicxulub structure.  相似文献   
12.

Background

Highly pathogenic avian influenza (HPAI) H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease.

Aim

To study influenza A (H5N1) virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease.

Methods

We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces.

Results

We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our data suggests that viremia, secondary to, for example, gastro-intestinal infection, can potentially lead to infection of the lung. HPAI H5N1 virus was a more potent inducer of cytokines (e.g. IP-10, RANTES, IL-6) in comparison to H1N1 virus in alveolar epithelial cells, and these virus-induced chemokines were secreted onto both the apical and basolateral aspects of the polarized alveolar epithelium.

Conclusion

The predilection of viruses for different routes of entry and egress from the infected cell is important in understanding the pathogenesis of influenza H5N1 infection and may help unravel the pathogenesis of human H5N1 disease.  相似文献   
13.
Angiostrongylus cantonensis is the etiologic agent of eosinophilic meningoencephalitis in humans. Cases have been recorded in many parts of the world, including Brazil. The aim of this study was to compare the differences in the biology and morphology of two different Brazilian haplotypes of A. : ac8 and ac9. A significantly larger number of L1 larvae eliminated in the faeces of rodents at the beginning of the patent period was observed for ac9 haplotype and compared to the total of L1 larvae eliminated, there was a significant difference between the two haplotypes. The ac9 haplotype showed a significant difference in the proportion of female and male specimens (0.6:1), but the same was not observed for ac8 (1.2:1). The morphometric analysis showed that male and female specimens isolated from ac8 haplotype were significantly larger with respect to body length, oesophagus length, spicule length (male) and distance from the anus to the rear end (female) compared to specimens from ac9. The morphological analysis by light microscopy showed little variation in the level of bifurcations at the lateral rays in the right lobe of the copulatory bursa between the two haplotypes. The biological, morphological and morphometric variations observed between the two haplotypes agree with the observed variation at the molecular level using the cytochrome oxidase subunit I marker and reinforce the possible influence of geographical isolation on the development of these haplotypes.  相似文献   
14.
15.

Background

Aluminum (Al) toxicity is an important limitation to food security in tropical and subtropical regions. High Al saturation on acid soils limits root development, reducing water and nutrient uptake. In addition to naturally occurring acid soils, agricultural practices may decrease soil pH, leading to yield losses due to Al toxicity. Elucidating the genetic and molecular mechanisms underlying maize Al tolerance is expected to accelerate the development of Al-tolerant cultivars.

Results

Five genomic regions were significantly associated with Al tolerance, using 54,455 SNP markers in a recombinant inbred line population derived from Cateto Al237. Candidate genes co-localized with Al tolerance QTLs were further investigated. Near-isogenic lines (NILs) developed for ZmMATE2 were as Al-sensitive as the recurrent line, indicating that this candidate gene was not responsible for the Al tolerance QTL on chromosome 5, qALT5. However, ZmNrat1, a maize homolog to OsNrat1, which encodes an Al3+ specific transporter previously implicated in rice Al tolerance, was mapped at ~40 Mbp from qALT5. We demonstrate for the first time that ZmNrat1 is preferentially expressed in maize root tips and is up-regulated by Al, similarly to OsNrat1 in rice, suggesting a role of this gene in maize Al tolerance. The strongest-effect QTL was mapped on chromosome 6 (qALT6), within a 0.5 Mbp region where three copies of the Al tolerance gene, ZmMATE1, were found in tandem configuration. qALT6 was shown to increase Al tolerance in maize; the qALT6-NILs carrying three copies of ZmMATE1 exhibited a two-fold increase in Al tolerance, and higher expression of ZmMATE1 compared to the Al sensitive recurrent parent. Interestingly, a new source of Al tolerance via ZmMATE1 was identified in a Brazilian elite line that showed high expression of ZmMATE1 but carries a single copy of ZmMATE1.

Conclusions

High ZmMATE1 expression, controlled either by three copies of the target gene or by an unknown molecular mechanism, is responsible for Al tolerance mediated by qALT6. As Al tolerant alleles at qALT6 are rare in maize, marker-assisted introgression of this QTL is an important strategy to improve maize adaptation to acid soils worldwide.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-153) contains supplementary material, which is available to authorized users.  相似文献   
16.
Many structural, signaling, and adhesion molecules contain tandemly repeated amino acid motifs. The alpha-actinin/spectrin/dystrophin superfamily of F-actin-crosslinking proteins contains an array of triple alpha-helical motifs (spectrin repeats). We present here the complete sequence of the novel beta-spectrin isoform beta(Heavy)- spectrin (beta H). The sequence of beta H supports the origin of alpha- and beta-spectrins from a common ancestor, and we present a novel model for the origin of the spectrins from a homodimeric actin-crosslinking precursor. The pattern of similarity between the spectrin repeat units indicates that they have evolved by a series of nested, nonuniform duplications. Furthermore, the spectrins and dystrophins clearly have common ancestry, yet the repeat unit is of a different length in each family. Together, these observations suggest a dynamic period of increase in repeat number accompanied by homogenization within each array by concerted evolution. However, today, there is greater similarity of homologous repeats between species than there is across repeats within species, suggesting that concerted evolution ceased some time before the arthropod/vertebrate split. We propose a two-phase model for the evolution of the spectrin repeat arrays in which an initial phase of concerted evolution is subsequently retarded as each new protein becomes constrained to a specific length and the repeats diverge at the DNA level. This evolutionary model has general applicability to the origins of the many other proteins that have tandemly repeated motifs.   相似文献   
17.
A mouse genomic clone containing a lactate dehydrogenase-A (LDH-A) processed pseudogene and a B1 repetitive element was isolated, and a nucleotide sequence of approximately 3 kb was determined. The pseudogene and B1 element are flanked by perfect 13-bp repeats, and the B1 sequence starts at 14 nucleotides 3' to the presumptive polyadenylation signal of the pseudogene. The nucleotide sequences of the LDH-A genes and processed pseudogenes from mouse, rat, and human were compared, and a phylogenetic tree was constructed. The rate and pattern of nucleotide substitutions in the LDH-A pseudogenes are similar to previously reported results (Li et al. 1984). The average rate of nucleotide substitutions in the LDH-A pseudogenes is 4.3 X 10(- 9)/site/year. The substitutions of C----T and G----A are most frequent, and A----G substitutions are relatively high. The rate of synonymous substitutions in the LDH-A genes is 5.3 X 10(-9), which is not significantly higher than the average rate of 4.7 X 10(-9) for 35 mammalian genes. The rate of nonsynonymous substitutions in the LDH-A genes is 0.20 X 10(-9), which is considerably lower than the average rate of 0.88 X 10(-9) for 35 mammalian genes. Thus, the mammalian LDH-A gene appears to be highly conserved in evolution.   相似文献   
18.
A cultured rat ovarian cell line (31 A-F(2)) was used to study the effect of growth factors (epidermal growth factor [EGF] and fibroblast growth factor [FGF]), a survival factor (ovarian growth factor [OGF]), a hormone (insulin), and an iron-binding protein (transferring) on cell proliferation and steroid production under defined culture conditions. EGF and insulin were shown to be mitogenic (half-maximal response at 0.12 nM and 0.11 muM, respectively) for 31A-F(2) cells incubated in serum-free medium. EGF induced up to three doublings in the cell population, whereas insulin induced an average of one cell population doubling. FGF, OGF, and transferrin were found not to have any prominent effect on cell division when incubated individually with 31A-F(2) cells in serum-free medium. However, a combination of EGF, OGF, insulin, and transferrin stimulated cell division to the same approximate extent as cells incubated in the presence of 5 percent fetal calf serum. EGF or insulin did not significantly affect total cell cholesterol levels (relative to cells incubated in serum-free medium) when incubated individually with 31A-F(2) cells. However, cell cholesterol levels were increased by the addition of OGF (250 percent), FGF (370 percent), or a combination of insulin and EGF (320 percent). Progesterone secretion from 31A-F(2) cells was enhanced by EGF (25 percent), FGF (80 percent), and insulin (115 percent). However, the addition of a mitogenic mixture of EGF, OGF, insulin, and transferrin suppressed progesterone secretion 150 percent) below that of control cultures. These studies have permitted us to determine that EGF and insulin are mitogenic factors that are required for the growth of 31A-F(2) cells and that OGF and transferrin are positive cofactors that enhance growth. Also, additional data suggest that cholesterol and progesterone production in 31A-F(2) cells can be regulated by peptide growth factors and the hormone insulin.  相似文献   
19.
ABSTRACT: BACKGROUND: The mechanisms of the antinociceptive activity of () epicatechin (EPI), a compound isolated from the hydroalcoholic fraction of Combreum leprosum Mart & Eicher. METHODS: were assessed in the model of chemical nociception induced by glutamate (20 mumol/paw). To evaluate the mechanisms involved, the animals , male Swiss mice (25-30 g), received EPI (50 mg/kg p.o.) after pretreatment with naloxone (2 mg/kg s.c. opioid antagonist), glibenclamide (2 mg/kg s.c. antagonist K + channels sensitive to ATP), ketanserin (0.3 mg/kg s.c. antagonist of receptor 5-HT2A), yoimbine (0.15 mg/kg s.c. alpha2 adrenergic receptor antagonist), pindolol (1 mg/kg s.c. 5-HT1a/1b receptor antagonist), atropine (0.1 mg/kg s.c. muscarinic antagonist) and caffeine (3 mg/kg s.c. adenosine receptor antagonist), ondansetron (0.5 mg/kg s.c. for 5-HT3 receptor) and L-arginine (600 mg/kg i.p.). RESULTS: The antinociceptive effect of EPI was reversed by pretreatment with naloxone and glibenclamide, ketanserin, yoimbine, atropine and pindolol, which demonstrates the involvement of opioid receptors and potassium channels sensitive to ATP, the serotoninergic (receptor 5HT1A and 5HT2A), adrenergic (receptor alpha 2) and cholinergic (muscarinic receptor) systems in the activities that were observed. The effects of EPI, however, were not reversed by pretreatment with caffeine, L-arginine or ondansetron, which shows that there is no involvement of 5HT3 receptors or the purinergic and nitrergic systems in the antinociceptive effect of EPI. In the Open Field and Rotarod test, EPI had no significant effect, which shows that there was no central nervous system depressant or muscle relaxant effect on the results. CONCLUSIONS: This study demonstrates that the antinociceptive activity of EPI in the glutamate model involves the participation of the opioid system, serotonin, adrenergic and cholinergic.  相似文献   
20.

Background  

Proteomic analysis has proven to be the most powerful method for describing plant species and lines, and for identification of proteins in complex mixtures. The strength of this method resides in high resolving power of two-dimensional electrophoresis (2-DE), coupled with highly sensitive mass spectrometry (MS), and sequence homology search. By using this method, we might find polymorphic markers to differentiate peanut subspecies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号